Tutorial
Necessary imports
using DifferentiableFrankWolfe: DiffFW, simplex_projection
using ForwardDiff: ForwardDiff
using FrankWolfe: UnitSimplexOracle
using Test: @test
using Zygote: Zygote
Constructing the wrapper
f(x, θ) = 0.5 * sum(abs2, x - θ) # minimizing the squared distance...
f_grad1(x, θ) = x - θ
lmo = UnitSimplexOracle(1.0) # ... to the probability simplex
dfw = DiffFW(f, f_grad1, lmo); # ... is equivalent to a simplex projection
Calling the wrapper
θ = rand(10)
10-element Vector{Float64}:
0.9627230004562226
0.11754347464908421
0.2433210256226479
0.9624576754382947
0.9763309009038867
0.4159546800119799
0.7012120472149518
0.3701613223473006
0.904284867807034
0.6923585428633326
frank_wolfe_kwargs = (max_iteration=100, epsilon=1e-4)
y = dfw(θ; frank_wolfe_kwargs)
10-element SparseArrays.SparseVector{Float64, Int64} with 4 stored entries:
[1] = 0.261342
[4] = 0.26104
[5] = 0.274855
[9] = 0.202763
y_true = simplex_projection(θ)
@test Vector(y) ≈ Vector(y_true) atol = 1e-3
Test Passed
Differentiating the wrapper
J1 = Zygote.jacobian(_θ -> dfw(_θ; frank_wolfe_kwargs), θ)[1]
J1_true = Zygote.jacobian(simplex_projection, θ)[1]
@test J1 ≈ J1_true atol = 1e-3
Test Passed
J2 = ForwardDiff.jacobian(_θ -> dfw(_θ; frank_wolfe_kwargs), θ)
J2_true = ForwardDiff.jacobian(simplex_projection, θ)
@test J2 ≈ J2_true atol = 1e-3
Test Passed
This page was generated using Literate.jl.