Tutorial
Necessary imports
using DifferentiableFrankWolfe: DiffFW, simplex_projection
using ForwardDiff: ForwardDiff
using FrankWolfe: UnitSimplexOracle
using Test: @test
using Zygote: Zygote
Constructing the wrapper
f(x, θ) = 0.5 * sum(abs2, x - θ) # minimizing the squared distance...
f_grad1(x, θ) = x - θ
lmo = UnitSimplexOracle(1.0) # ... to the probability simplex
dfw = DiffFW(f, f_grad1, lmo); # ... is equivalent to a simplex projection
Calling the wrapper
θ = rand(10)
10-element Vector{Float64}:
0.300030460072818
0.6872777012755744
0.8568514886465858
0.323903091725261
0.8786419965139313
0.0916362858029951
0.6389548522730417
0.29089474608332
0.4779956250484795
0.798441118556476
frank_wolfe_kwargs = (max_iteration=100, epsilon=1e-4)
y = dfw(θ; frank_wolfe_kwargs)
10-element SparseArrays.SparseVector{Float64, Int64} with 5 stored entries:
[2 ] = 0.115253
[3 ] = 0.284826
[5 ] = 0.306574
[7 ] = 0.0669019
[10] = 0.226445
y_true = simplex_projection(θ)
@test Vector(y) ≈ Vector(y_true) atol = 1e-3
Test Passed
Differentiating the wrapper
J1 = Zygote.jacobian(_θ -> dfw(_θ; frank_wolfe_kwargs), θ)[1]
J1_true = Zygote.jacobian(simplex_projection, θ)[1]
@test J1 ≈ J1_true atol = 1e-3
Test Passed
J2 = ForwardDiff.jacobian(_θ -> dfw(_θ; frank_wolfe_kwargs), θ)
J2_true = ForwardDiff.jacobian(simplex_projection, θ)
@test J2 ≈ J2_true atol = 1e-3
Test Passed
This page was generated using Literate.jl.