Subset selection
Public
DecisionFocusedLearningBenchmarks.SubsetSelection.SubsetSelectionBenchmark
— Typestruct SubsetSelectionBenchmark <: AbstractBenchmark
Benchmark problem for the subset selection problem. Reference: https://arxiv.org/abs/2307.13565.
The goal is to select the best k
items from a set of n
items, without knowing their values, but only observing some features.
Fields
n::Int64
: total number of itemsk::Int64
: number of items to select
DecisionFocusedLearningBenchmarks.Utils.generate_dataset
— Functiongenerate_dataset(
bench::SubsetSelectionBenchmark;
...
) -> Any
generate_dataset(
bench::SubsetSelectionBenchmark,
dataset_size::Int64;
seed,
identity_mapping
) -> Any
Generate a dataset of labeled instances for the subset selection problem. The mapping between features and cost is identity.
DecisionFocusedLearningBenchmarks.Utils.generate_maximizer
— Methodgenerate_maximizer(
bench::SubsetSelectionBenchmark
) -> Base.Fix2{typeof(DecisionFocusedLearningBenchmarks.SubsetSelection.top_k), Int64}
Return a top k maximizer.
DecisionFocusedLearningBenchmarks.Utils.generate_statistical_model
— Methodgenerate_statistical_model(
bench::SubsetSelectionBenchmark;
seed
) -> Flux.Dense{typeof(identity), Matrix{Float32}}
Initialize a linear model for bench
using Flux
.