Ranking
Public
DecisionFocusedLearningBenchmarks.Ranking.RankingBenchmark
— Typestruct RankingBenchmark{E} <: AbstractBenchmark
Basic benchmark problem with ranking as the CO algorithm.
Fields
instance_dim::Int64
: instances dimension, total number of classesnb_features::Int64
: number of featuresencoder::Any
: true mapping between features and costs
DecisionFocusedLearningBenchmarks.Ranking.RankingBenchmark
— MethodRankingBenchmark(
;
instance_dim,
nb_features,
seed
) -> RankingBenchmark{E} where E<:(Flux.Chain{T} where T<:Tuple{Flux.Dense{typeof(identity), Matrix{Float32}}, typeof(vec)})
Custom constructor for RankingBenchmark
.
Private
DecisionFocusedLearningBenchmarks.Ranking.ranking
— Methodranking(θ::AbstractVector; rev, kwargs...) -> Any
Compute the vector r
such that rᵢ
is the rank of θᵢ
in θ
.
DecisionFocusedLearningBenchmarks.Utils.generate_dataset
— Functiongenerate_dataset(bench::RankingBenchmark; ...) -> Any
generate_dataset(
bench::RankingBenchmark,
dataset_size::Int64;
seed,
noise_std
) -> Any
Generate a dataset of labeled instances for the ranking problem.
DecisionFocusedLearningBenchmarks.Utils.generate_maximizer
— Methodgenerate_maximizer(
bench::RankingBenchmark
) -> typeof(DecisionFocusedLearningBenchmarks.Ranking.ranking)
Return a ranking maximizer.
DecisionFocusedLearningBenchmarks.Utils.generate_statistical_model
— Methodgenerate_statistical_model(
bench::RankingBenchmark;
seed
) -> Flux.Chain{T} where T<:Tuple{Flux.Dense{typeof(identity), Matrix{Float32}}, typeof(vec)}
Initialize a linear model for bench
using Flux
.