Subset selection

Public

DecisionFocusedLearningBenchmarks.PortfolioOptimization.PortfolioOptimizationBenchmarkType
struct PortfolioOptimizationBenchmark <: AbstractBenchmark

Benchmark problem for the portfolio optimization problem.

Data is generated using the process described in: https://arxiv.org/abs/2307.13565.

Fields

  • d::Int64: number of assets

  • p::Int64: size of feature vectors

  • deg::Int64: hypermarameter for data generation

  • ν::Float32: another hyperparameter, should be positive

  • Σ::Matrix{Float32}: covariance matrix

  • γ::Float32: maximum variance of portfolio

  • L::Matrix{Float32}: useful for dataset generation

  • f::Vector{Float32}: useful for dataset generation

source
DecisionFocusedLearningBenchmarks.Utils.generate_datasetFunction
generate_dataset(
    bench::PortfolioOptimizationBenchmark;
    ...
) -> Vector
generate_dataset(
    bench::PortfolioOptimizationBenchmark,
    dataset_size::Int64;
    seed,
    type
) -> Vector

Generate a dataset of labeled instances for the portfolio optimization problem.

source
DecisionFocusedLearningBenchmarks.Utils.generate_maximizerMethod
generate_maximizer(
    bench::PortfolioOptimizationBenchmark
) -> DecisionFocusedLearningBenchmarks.PortfolioOptimization.var"#portfolio_maximizer#3"{Float32, Matrix{Float32}, Int64}

Create a function solving the MIQP formulation of the portfolio optimization problem.

source

Private